#
# Copyright (C) 2019-2025 Leo Singer
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"""Bullet charts for Bayes factors."""
import numpy as np
from matplotlib import pyplot as plt
__all__ = ("plot_bayes_factor",)
[docs]
def plot_bayes_factor(
logb,
values=(1, 3, 5),
labels=("", "strong", "very strong"),
xlim=7,
title=None,
palette="RdYlBu",
var_label="B",
):
"""Visualize a Bayes factor as a `bullet graph`_.
Make a bar chart of a log Bayes factor as compared to a set of subjective
threshold values. By default, use the thresholds from
Kass & Raftery (1995).
.. _`bullet graph`: https://en.wikipedia.org/wiki/Bullet_graph
Parameters
----------
logb : float
The natural logarithm of the Bayes factor.
values : list
A list of floating point values for human-friendly confidence levels.
labels : list
A list of string labels for human-friendly confidence levels.
xlim : float
Limits of plot (`-xlim` to `+xlim`).
title : str
Title for plot.
palette : str
Color palette.
var_label : str
The variable symbol used in plotting
Returns
-------
fig : Matplotlib figure
ax : Matplotlib axes
Examples
--------
.. plot::
:include-source:
from ligo.skymap.plot.bayes_factor import plot_bayes_factor
plot_bayes_factor(6.3, title='BAYESTAR is awesome')
"""
with plt.style.context("seaborn-v0_8-notebook"):
fig, ax = plt.subplots(figsize=(6, 1.7), tight_layout=True)
ax.set_xlim(-xlim, xlim)
ax.set_ylim(-0.5, 0.5)
ax.set_yticks([])
ax.set_title(title)
ax.set_ylabel(
r"$\ln\,{}$".format(var_label),
rotation=0,
rotation_mode="anchor",
ha="right",
va="center",
)
# Add human-friendly labels
ticks = (*(-x for x in reversed(values)), 0, *values)
ticklabels = (
*(f"{s}\nevidence\nagainst".strip() for s in reversed(labels)),
"",
*(f"{s}\nevidence\nfor".strip() for s in labels),
)
ax.set_xticks(ticks)
ax.set_xticklabels(ticklabels)
plt.setp(ax.get_xticklines(), visible=False)
plt.setp(ax.get_xticklabels()[: len(ticks) // 2], ha="right")
plt.setp(ax.get_xticklabels()[len(ticks) // 2 :], ha="left")
# Plot colored bands for confidence thresholds
fmt = plt.FuncFormatter(lambda x, _: f"{x:+g}".replace("+0", "0"))
ax2 = ax.twiny()
ax2.set_xlim(*ax.get_xlim())
ax2.set_xticks(ticks)
ax2.xaxis.set_major_formatter(fmt)
levels = (-xlim, *ticks, xlim)
colors = plt.get_cmap(palette)(np.arange(1, len(levels)) / len(levels))
ax.barh(
0,
np.diff(levels),
1,
levels[:-1],
linewidth=plt.rcParams["xtick.major.width"],
color=colors,
edgecolor="white",
)
# Plot bar for log Bayes factor value
ax.barh(
0,
logb,
0.5,
color="black",
linewidth=plt.rcParams["xtick.major.width"],
edgecolor="white",
)
for ax_ in fig.axes:
ax_.grid(False)
for spine in ax_.spines.values():
spine.set_visible(False)
return fig, ax